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The optical effects of the light produced by lightning are of interest to atmospheric

scientists for a number of reasons (4,7,13). We mention two techniques used to explain the

nature of these effects: Monte Carlo simulation (13) and an equivalent medium approach

(10). In the Monte Carlo approach, paths of individual photons are simulated; a photon

is said to be scattered if it escapes the cloud, otherwise it is absorbed. In the equivalent

medium approach, the cloud is replaced by a single obstacle whose properties are specified

by bulk parameters obtained by methods due to Twersky. See Phanord (10) for references.

In this report, we use Boltzmann transport theory to obtain photon intensities. The

photons are treated like a Lorentz gas. We consider only elastic scattering and neglect

gravitational effects. Water droplets comprising a cuboidal cloud are assumed to be

spherical and homogeneous. Furthermore, we assume that the distribution of droplets in

the cloud is uniform and that scattering by air molecules is negligible. The time dependence

and five dimensional nature of this problem make it particularly difficult; neither analytic

nor numerical solutions are known (3).

We begin with the single speed Boltzmann transport equation (3)

Ol _ -c_. VI + C Kwo f Pldgt' - Kcl + cs, I = l(r, _,t), [1]Ot 47r

where I is the photon intensity which depends on position (r), velocity direction (_), and

time (t). Inside the integral, I is considered a function of _l. Here, c is the speed zof light,

If = l/A, where A is the mean free path, wo is the single scattering albedo, 79= 79_'. f_)

is the scattering phase function, and s is a source term. The intensity in a volume V

bounded by a surface S is uniquely determined by the initial intensity in V, the sources

in V, and the intensity incident on S (1).

In order to reduce the number of dimensions, we use the PN approximation (1,3). The

intensity, phase function, and source term are all expanded in series of spherical harmonics

r_"(_) = P:(cose)ei"¢_; _ = _(8, ¢);

O0 II

/(r,_, t) = Zbmynm(_), bran=b_n(r, t), Z_ Z _ ;
,=0 [21

V's y.m(fi)8_-_Z.._ n n

The addition theorem for spherical harmonics (12) allows us to write

=
In particular, if we use the Henyey- Greenstein function (14), dn = (2n + 1)g n, where g

is the asymmetry factor. The integral in [1] may be evaluated using orthogonality. The

advection term of contains an inner product of _ and a gradient which we may write as

V -= sin 0 cos ¢----0 ¢ O _if_ft.
Ox + sin 0 sin Oy + cos 0 uz" [4]
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We absorb the trigonometric functions into the spherical harmonics comprising I with the

aid of the recurrsion relations for the Legendre functions (9) and orthogonality is used to

obtain the coupled set of partial differential equations,

10b m 1 (n-m) O.O_bm (n-m+l)(n-m)Abm+_
C 0t 2(2r$--1) A'kb"lWl_ql+ \ ]Tn_--_l 0z .-1- 2(2n-- 1) -- n-,

x a*_m-,__(r'+_+_) ,9 ,,, (n+m+O(r,+-',+_)A_,,,,+,
_(_,_+3)" _"+I" 2(2n+3) az b"+_+ 2(2_+3) "-'_"+'

(wodn) m m. 0 .0 A. 0 iO-- gy,+K 1 2n--l- 1 _xx "_"l Oyy '

[5]

where any function b_ with m > n or n < 0 is identically zero.

We work with a truncated version of [5] motivated by the Eddington approximation

( ,-,)(2), b,,"-- 0 for n >_ 2. Using the notation bo° = ]'1, bl _ L_ = f2, z bI +_- = ]'3, ba° = f4,

we have

OL _ / oL oA oL k
- +noS<S,

, aL t-_IKA = Of, 10 A +tS, KA Of_ x Of 4 +tS, KA = Of, [6]
c O--T- Oz' c Ot -- Oy' c Ot -0---['

Wo dn o
fin= 1 , 8:8o,

2n+l

where we have assumed that m_s n -0, n > 1. This truncation does not constitute a consistent

solution to the transport equation, a fact implicit in (2,5,6) and explicit in (1). Orthogo-

nality may be used to produce an additional five equations which are neglected.

The conditions at an interface between a convex cloud and a vacuum are given by (1,3)

I(/Y, ft, t) =0, fl.h <0, [7]

where _' is a position vector on the cloud's boundary and h is the outward normal.

Physically, this condition corresponds to the requirement that for convex cloud geometries,

photons which escape the cloud cannot reenter. With the simplified representation given

by the Eddington approximation, it is generally impossible to satisfy [7] exactly. The

condition usually used is the Marshak boundary condition (1,2,3,5,6),

r.:_ f <,. <,,,)<,,,: o,
fi._<o

Is]

where F, is the irradiance in the direction h. The integral of F, over a portion of the

interface yields the number of photons reentering the cloud through that portion.

TT-2



L _

Consider a plane surface separating the cloud and the region outside with normal h.

Since we may take the area to be vanishingly small and still require that no photons reenter

through this surface, [8] may be rewritten as

2a" a"

i/

0 2[
2

where I[O, ¢] is evaluated on the cloud boundary and 0,, is measured from h considered as

a polar axis. An appropriate rotation of coordinates yields the condition

2

.[1 = 3 (nzf2+n_f3+nzf4), h = n_3c+n_+nx_, [10]

on an interface. This form is valid for any convex shape and is a generalization of a similar

condition given by Davies (3).

We use Laplace transforms in [6] and obtain

k2Fx= _72F x +T, k2-_ 3(_o'_'-q-_)(t_ali_-_-_),Z_ 3(/_1K"1-_)(-_'_t-S), [11]

where _ is the transform variable, Fa and S are the Laplace transforms of f_ and a

respectively, ]'1 (o) is _he initial value of ./'1, and we have assumed that f2 = fs = f4 = 0

at t = 0. The boundary condition becomes

on +hFa = O' h=-2 +fl, K . [12]

We consider a cuboidal cloud centered at the origin with boundaries coinciding with

z = +_, y = -I-C,2 z = -4-3. Equations [11,12] are solved using finite Fourier transforms

(14) to obtain

8h3Tcos _pz cos r/qy cos VrZ , [13]F,

(ah+2 sin 2 _,)(flh+2 sin 2 _r/q)(7h+2 sin 2 _v.)(k2+_+rl_+v_)p,q,r

where T is the finite Fourier transform of T and _p, r/q, v_ are the roots of

a h /3 h tan 7 h [14]
tan _p = _-_p, tan _r]q = r/-q' -_Ur = v"-'_

with positive real parts.

Due to the transcendental nature of the functions defined by [14], it is necessary to

resort to numerical methods. Fortunately, it is possible to approximately invert Laplace

transforms with a knowledge of F_(s), _ = 1,2,3 , .... Complete details are provided in

Lanczos (8).
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Once ]'iis known, f2, f3, f4 may be found using [61. The photon intensity at a point
outside of the cloud in a direction fl may be traced back to its value on the cloud's surface

t' (1), i.e., I(r, _, t) = IIr-c_(t- t'),_, t'), where t' is chosen soat earlieran time

that r- c_(t- t') = P.

We are presently working on implementing the algorithms described above and on a

numerical procedure which is not limited to the Eddington approximation. We intend to

generalize the results to other cloud shapes and compare results with existing Monte Carlo

simulations as well as with results using an equivalent medium approach.
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